Biochemical Properties of MutL, a DNA Mismatch Repair Endonuclease
نویسندگان
چکیده
DNA mismatch repair (MMR) is one of the most widely conserved DNA repair systems, which repairs mismatched bases generated mainly by the error of DNA polymerases during replication (Friedberg, et al., 2006, Iyer, et al., 2006, Kunkel, et al., 2005, Morita, et al., 2010). MMR increases the replication fidelity by 20 to 400-fold (Schaaper, 1993). Mutations and epigenetic silencing in MMR genes cause human hereditary nonpolyposis colon cancers as well as sporadic tumors (Fishel, et al., 1995, Fishel, et al., 1994, Kane, et al., 1997, Leach, et al., 1993, Modrich, et al., 1996, Suter, et al., 2004), indicating the significance of this repair system. To date, two types of MMR mechanisms have been clarified: one is employed by eukaryotes and most bacteria (Fig. 1A and B) (Modrich, 2006) and the other is specific to Escherichia coli and other -proteobacteria (Fig. 1C) (Modrich, et al., 1996). The fundamental mechanism and the required proteins in the two types of MMRs are relatively similar to each other. A mismatch is recognized by the bacterial MutS homodimer, eukaryotic MutS (MSH2-MSH6 heterodimer), or MutS (MSH2-MSH3 heterodimer) (Acharya, et al., 2003, Drotschmann, et al., 2002, Gradia, et al., 1997, Gradia, et al., 1999, Lamers, et al., 2000, McCulloch, et al., 2003, Obmolova, et al., 2000, Tachiki, et al., 2000). Subsequently, the bacterial MutL homodimer or eukaryotic MutL (MLH1-PMS2 and MLH1-PMS1 heterodimers in humans and yeast, respectively) is recruited to the mismatched DNA to stimulate downstream events (Acharya, et al., 2003, Kadyrov, et al., 2006). The largest difference between the two types of MMR mechanisms is in the “strand discrimination” system. Although both bases constituting the mismatch are canonical, MMR needs to identify which base is to be repaired. In eukaryotes and most bacteria, MMR directs the repair to the error-containing strand of the mismatched duplex by recognizing the strand discontinuities in the newly synthesized strand (Kadyrov, et al., 2006, Kadyrov, et al., 2007, Larrea, et al., 2010, Modrich, 2006). The termini of leading and lagging strands are thought to serve as discrimination signals. On the other hand, E. coli MMR reads the absence of methylation at the restriction site in the newly synthesized strand (Iyer, et al., 2006, Kunkel, et al., 2005, Larrea, et al., 2010). Before the site-specific DNA methylase (e.g., E. coli Dam methylase (Schlagman, et
منابع مشابه
Physical and functional interactions between Escherichia coli MutL and the Vsr repair endonuclease
DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vs...
متن کاملStoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair
Mismatch repair (MMR) is an evolutionarily conserved DNA repair system, which corrects mismatched bases arising during DNA replication. MutS recognizes and binds base pair mismatches, while the MutL protein interacts with MutS-mismatch complex and triggers MutH endonuclease activity at a distal-strand discrimination site on the DNA. The mechanism of communication between these two distal sites ...
متن کاملStructure of the endonuclease domain of MutL: unlicensed to cut.
DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endon...
متن کاملMutL traps MutS at a DNA mismatch.
DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the...
متن کاملThe C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL.
The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn(2+), Mg(2+) or Ca(2+) ions, unlike human MutLalpha which shows endonuclease activity only in the presence of Mn(2+). We report in the present...
متن کاملA possible mechanism for exonuclease 1-independent eukaryotic mismatch repair.
Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5' to 3' hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch rep...
متن کامل